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Abstract— We present penetration equations for rigid, spherical-nosed rods that penetrate 6061-
T651 aluminum targets. The penetration models use the spherical cavity-expansion approximation
and constitutive equations for the target that include strain hardening and strain-rate sensitivity.
We obtained closed-form penetration equations for an incompressible target material; however,
predictions for a compressible target require the numerical solution of a coupled set of nonlinear
ordinary differential equations. Numerical results show the effects of compressibility, strain hard-
ening, and strain-rate sensitivity. We also show that our penetration model requires compressibility,
strain hardening, and strain-rate sensitivity to obtain good agreement with previously published
depth of penetration data for striking velocities between 300 and 1200 m/s. ; 1998 Elsevier Science
Ltd. All rights reserved.

INTRODUCTION

Analytical methods for penetration mechanics began with the work of Bishop et al. (1945).
They developed equations for the quasi-static expansions of cylindrical and spherical
cavities and used these equations to estimate forces on conical nose punches pushed slowly
into metal targets. Later, Goodier (1965) developed a model to predict the penetration
depth of rigid spheres launched into metal targets. That penetration model included target
inertial effects, so Goodier (1965) approximated the target response by results from the
dynamic, spherically symmetric, cavity-expansion equations for an incompressible target
material derived by Hill (1948) and discussed by Hill (1950) and Hopkins (1960). More
recently, Forrestal er al. (1991) and Forrestal et al. (1995) developed spherical cavity-
expansion penetration models for spherical-nose, rigid rods that penetrate ductile metal
targets,

In our recent studies (Forrestal e al. 1991 ; Forrestal er al. 1995), we present analytical
models and depth of penetration data for high-strength steel, spherical-nose rod projectiles
that penetrate 6061-T651 aluminum targets. We obtained compression stress-strain data
to 100% true strain at a strain rate of 1077 s~ and used a rate independent, power-law
stress—strain law to describe the post-yield material behavior. In addition, we used the
spherical cavity-expansion approximation (Forrestal et al., 1995) that approximates the
axisymmetric target response with equations derived from spherically symmetric, cavity-
expansion analyses. We compared our analytical model with simulations from axisymmetric
Lagrangian (Chen, 1995) and Eulerian (Silling, 1995) wavecodes and showed nearly ident-
ical agreement with both wavecodes (Forrestal er al., 1995). When we compared our
analytical model and wavecode predictions with depth of penetration data for striking
velocities between 300 and 1200 m/s, we obtained excellent agreement when we included a
tangential stress on the projectile nose corresponding to an assumed Coulomb type sliding
frictional resistance. When we neglected sliding friction, the models overpredicted measured
penetration depths and differed by about 20% at a striking velocity of 1200 m/s. As
previously discussed (Forrestal et al., 1991), we have no data for sliding frictional resistance
at fast sliding velocities and large interface stresses. Thus, the introduction of a sliding
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frictional resistance was a hypothetical explanation to bring the analytical and wavecode
models in agreement with the depth of penetration data.

For this study, we use a constitutive equation for the target that includes strain
hardening and strain-rate sensitivity. The present constitutive model for the 6061-T651
target material was motivated by recent high strain-rate, Hopkinson bar data (Mosher,
1996) and pressure-shear data (Yadav et af., 1995). In addition, our present penetration
model neglects sliding frictional resistance at the projectile nose—target interface. We neglect
sliding frictional resistance based on recent detailed computational models by Camacho
and Ortiz (1997). Camacho and Ortiz (1997) performed finite-element simulations cor-
responding to experiments conducted by Forrestal et a/. (1990) on the perforation of 5083-
H131 aluminum plates with tungsten, conical-nosed projectiles. These simulations use a new
adaptive meshing technique and a constitutive material law that includes rate-dependent
plasticity, heat conduction, and thermal coupling. Camacho and Ortiz (1997) conclude
there is an exceedingly small melted layer in the target next to the projectile that provides
a nearly frictionless interface.

In summary, this study presents penetration equations for rigid, spherical-nose rods
that penetrate 6061-T651 targets. The target constitutive model includes the effect of strain
hardening and strain-rate sensitivity. [n the next section, we present the target constitutive
model and supporting material data. We then develop spherically symmetric cavity-expan-
sion equations that are employed in our penetration equations. Finaily, we present our
penetration equations and compare the predictions with previously published depth of
penetration data.

CONSTITUTIVE MODEL FOR 6061-T651 ALUMINUM

For this study we seek analytical solutions for spherically symmetric cavity-expansion
problems to be used for input into our penetration equations. We present a constitutive
equation for 6061-T651 aluminum that is convenient for our analysis and represents stress—
strain data for strain rates from 107°~10° s~ '. For a state of uniaxial stress, the stress—strain
relation is given by

{Es. o< Y,

— Ee\ 2\ , 1 ,b
7 ]Y(f> +o (8> . o> Y, (1a.b)
Y, o

where o is the Cauchy stress (true stress), ¢ is the logarithmic strain (true strain), £ is the
strain rate, £ is Young’s modulus, Y is the quasi-static yield strength, » is the strain
hardening exponent, m is the strain-rate sensitivity exponent, &, is a reference strain rate, «
is a curve fitting parameter with units of stress, and Y is the dynamic yield stress given by

E’; m
Yo= Y+u (-;-> : (1c)
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The first term in (1b) is similar to the modified Ludwik equation (Chakrabarty, 1987) that
describes strain hardening and the second term describes the increase in yield stress due to
the strain-rate effects (Yadav et al., 1995).

We obtained constants for the constitutive eqn (1) from compressive stress—strain data
for 6061-T6511 aluminum (the only difference between 6061-T651 and 6061-T6511 is the
outer surface finish) obtained by Mosher (1996) at nominal strain rates (Ramesh and
Narasimhan, 1996) of 107* s~' and 5.4 x 10° s™' and pressure-shear data for 6061-T651
aluminum obtained by Yadav ez @/. (1995) at a nominal strain rate of 10°s~'. From curve
fits to these data, the model parameters are taken as E = 68.9 GPa, ¥ = 276 MPa, n = 0.072.
a = 32.0 MPa, & = 10005, and m = 0.348. Furthermore, the density of the undeformated
target material is p, = 2710 kg/m*, and when compressibility is considered Poisson’s ratio
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Fig. 1. Stress-strain data and data-fit for the 6061-T6511 aluminum at a nominal strain rate of
&=0000s "

is taken as v = 1/3. Figure | shows data and results from (1) for a nominal strain rate of
10~? s~ !, For the data in Fig. 1, Mosher (1996) conducted compression experiments at a
nominal strain-rate of 10~ s~! on specimens machined from 254-mm-diameter round stock
in the axial, polar and radial directions. Figure 1 shows that for strains less than ¢ = 0.3
there are some differences in flow stress values for the three orientations which is attributed
to the manufacturing process of the round stock. However, for larger strains the behavior
in all three directions is nearly identical. Figure 2 shows Hopkinson bar data from an axial
specimen (Mosher, 1996) and results from (1) for a nominal strain rate of 5.4 x 10*s™'. In
both Figs 1 and 2 good agreement is observed between the experimental data and results
from the constitutive equation (1). In addition, Yadav et a/. (1995) report a flow stress of
485 MPa at a strain of ¢ = 0.06 from a pressure-shear experiment at a nominal strain-rate
of 10° s~ ' which is in close agreement with (1) for the selected constitutive model parameters.

In summary, we present a constitutive equation (1) for 6061-T65]1 aluminum and
choose parameters to fit stress—strain data for nominal strain-rates from 107°~10°s~'. From
our penetration model we predict peak strain rates of 6.8 x 10° s~ for a projectile striking
velocity of 1200 m/s. Klopp ez al. (1985) present pressure-shear data that suggests that the
flow stress does not saturate until the nominal strain-rate is between 10¢ and 107 57", so we
assume that (1) is a reasonable approximation for the penetration model presented in this
study for projectile striking velocities up to 1200 my/s.

SPHERICALLY SYMMETRIC CAVITY-EXPANSION MODELS

Incompressible, strain hardening, rate-dependent model

In this section the cavity-expansion model described by Hopkins (1960) for an incom-
pressible elastic-perfectly plastic material is extended to include strain hardening and strain-
rate dependence through the phenomenological constitutive relation given in (1). For this
problem a spherically symmetric cavity is expanded from zero initial radius to radius a. As
shown in Fig. 3, this expansion produces plastic and elastic response regions. The plastic
region is bounded by the radii 7 = ¢ and r = b, where r is the radial Eulerian coordinate
and 4 is the interface position between the plastic and elastic response regions. Next, we
present the equations that govern this problem. Then, we derive our solution.
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Fig. 3. Response regions for the cavity-expansion problem.

The equations of momentum and mass conservation in Eulerian coordinates with
spherical symmetry are

do, N 2(0.—ay) _ o v 5
cr ¥ =7f ot T or (28)
13 R )
po 5 L= = 3pr”. (2b)

where o, 0, are the radial and hoop components of the Cauchy stress, measured positive
in compression, and p, and p are the densities in the undeformed and deformed states and
are equal when the material is assumed incompressible. Particle displacement « and particle
velocity ¢ in the radial direction (outward motion taken positive) are related by
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True strain rates and the logarithmic (true) strain—displacement relations are, respectively,
b= — ", &= —, (4)

and
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where (.:.) =d(...)/dt (i.e. material derivative operator), and for an incompressible
material ¢ = —2¢,. Equations (2)—(5) along with the constitutive eqn (1) govern this
spherically symmetric, incompressible cavity-expansion problem.

Plastic flow is introduced by the method presented by Hill (1950) for the quasi-static
spherical cavity-expansion problem and later used by Luk et a/. (1991) for the dynamic
case. This method allows for data obtained from uniaxial compression tests to be directly
applied to the cavity-expansion problem. From Hill (1950), the uniaxial stress in (1) is
replaced with (g, —a,) and the uniaxial strain is replaced with ¢,.. Thus,

Ee. Y &\
g, —0,= Y|~ Fo |, (6a)
Yy &9
Y, = Y+oc(;> . (6b)
()

The boundary condition at the cavity surface r = @ 1s
u = a(t). (7

Integrating (2b) subject to condition (7) gives the radial particle displacement as

a:‘ i:3
u:rli]—(IA K) ] (8)
I

Particle velocity in the radial direction is obtained by differentiating (8) and substituting
into (3) giving

a‘d

r=-

r-

9)

where the cavity radius a is only a function of time. From (4) and (9) the strain rates are

. 2a%a a‘a (10)
go= 0 g =Y
,,3 ’,3

Substituting (5), (8), (6b) and (10) into (6a) allows the yield criterion to be expressed in
terms of the radial distance r and cavity radius a. Thus,
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Conservation of momentum (2a) in the plastic region a < r < b can be expressed in terms
of r and « using (9) and (11). Thus,
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where (12) can be directly integrated with respect to r throughout the plastic region to
obtain a,.

In the elastic region b < r < oo displacements and strains are assumed small. Response
equations for the elastic region are presented by Hopkins (1960). The particle displacement
and particle velocity in the radial direction are

a ata
U=-—-, r=-—. (13)
3y P
The elastic strains are
ou 24° u o’ (14)
g, = ——=——, = ——= ——,
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and Hook’s law for an incompressible material provides the relation

21::a3
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Using (15) with (2a) and integrating gives the radial stress in the elastic region as

a4E fa\’ 7P (a\
g, = (2} + 2% + 2007y — PEE (2 (16)
9 \r v 2 \r

Z

For an incompressible material, the Hugoniot interface conditions require that the
displacement, velocity, and traction normal to the elastic—plastic interface be continuous
(Hopkins, 1960). Thus, integrating (12) between a and b, and using (16) provides the
expression for the radial stress at the cavity surface as

o =5 T G [ e
(a)y=—|+] +=- e SR . R —dx
9 b 3 3Y 0 (] _\)[] +|pdm(l _x)m]n

n . N 3 . N 2!1 2(1 " [ a 2m 17
da+Za° |+ —|— —|=
PojdamHd 3m \ aé, b - 40

In (17), b is an unknown quantity which is obtained by equating (9) and (15) at the
elastic—plastic interface (r = b) and solving the nonlinear equation
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using the bisection method as described by Press ef al. (1989). A close approximation for b
can be obtained by an iterative solution of (18a) that recognizes that the last term in (18a)

is small. Thus,
a\' 3Y 3o /3Ya\”
) POl (it B 18b
(h) 2E T 2E <Eaé”) (185)

which can also be used as an initial guess with the bisection method. Once 5 i1s obtained,
the dynamic flow stress Y, at the elastic plastic interface is defined by

2E (a\’
Vo= ( h) . (19)

Using (19) in (17) gives the radial stress at the cavity surface which can be written in
dimensionless form as

SR
o la) 2 [Yd <2E)” f‘ B [—Inx]" ]
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The first term in (20) corresponds to the strain hardening component of the solution, and
in general the integral requires numerical integration using an open integration formula
(Press et al., 1989). The second term in (20) corresponds to the inertial part of the solution,
and the last term accounts for the strain-rate effects. The last component in the strain-rate
term of (20) is generally quite small (i.e. £> ¥,) and can be neglected. A further sim-
plification of (20) occurs if it is assumed that: (a) Y, = ¥ at the elastic plastic interface,
and (b) the dynamic effects in the integral in the first term can be neglected. It is found that
for the problems of interest these assumptions have only @ minor effect on the solution as
will be shown later. Thus, with the above simplifications (20) reduces to

3Y
o.(a) 2 2EN' (12 [—Inx]” o 3. 200 {2a\"
il I (niad LSLiel MPTP Pol i 2 a2 i
% 3[ +(3Y) j, e R R R R y7nl Ve LY

where now the rate dependence is confined entirely to the last term in (21). It has also been
shown by Forrestal er al. (1995) that for long rod projectiles the acceleration component
da has a negligible effect in the equation for the depth of penetration and can also be
neglected. In addition (20) and (21) show that the strain-rate term is dependent on the
cavity radius; therefore, a similarity solution as used by Forrestal e a/. (1991) is not
possible when strain-rate effects are considered.

Augmented compressible, strain-hardening, rate-dependent model

As shown by (21) and previously discussed, the approximate incompressible solution
consists of three uncoupled effects: (a) a quasi-static, strain hardening term, (b) inertial
terms, and (c) a strain-rate term. The strain-rate term introduces a length scale which is the
cavity radius: therefore, incompressible or compressible cavity-expansion solutions using
a similarity transformation are not possible (Luk er al., 1991). We show later in our
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Fig. 4. Projectile geometry.

numerical results that the strain-rate effect is important for high velocity penetration
problems, but that the quasi-static, strain hardening and inertial effects dominate the
penetration process. Thus, we augment the compressible solution of Luk er al. (1991) by
adding the strain-rate term derived from the incompressible analysis. We consider the
augmented solution to be a reasonable approximation for a strain-rate sensitive, com-
pressible material and later justify this approximation by showing good agreement with
penetration depth versus striking velocity data.
The augmented dimensionless radial stress at the cavity surface is given by

g.(a) 20 [2a\" 3Y.\”
d_s V(5 2
K Sd+3mK<aéo) [ <2E> } (22)

where K is the bulk modulus. The first term S, in (22) corresponds to the compressibie
strain-hardening solution (Luk et al., 1991) which is scale independent, and the second
term accounts for the strain-rate sensitivity which i1s dependent on the size of the cavity
radius. In the course of this study, we found a way to simplify the computational procedure
used by Luk er al. (1991) for the compressible strain-hardening solution by obtaining
closed-form expressions for the boundary conditions at the elastic—plastic interface. This
new procedure to obtain S, is outlined in the Appendix.

Carvity-expansion numerical results

For input to our penetration models (Forrestal et al., 1995), we require the cavity to
be expanded from zero initial radius at a constant cavity-expansion velocity @ = V'; there-
fore, we always consider the cavity-expansion velocity to be constant. Material parameters
for the numerical examples are given in the section on the constitutive model. In addition,
the cavity radius is taken as ¢ = 3.55 mm which corresponds to the radius of the spherical-
nosed projectiles used in the penetration experiments as illustrated in Fig. 4. Figure 5
compares results from the incompressible solutions given by (20) and (21) and shows that
(21) 1s an excellent approximation. As previously discussed, (21) consists of a quasi-static
strain hardening term, inertial terms, and a strain-rate term. The strain-rate term from (21)
is also used in the augmented compressible solution.

Results for the incompressible and compressible models with and without strain rate
effects are shown in Fig. 6. It is observed that for all values of dimensionless cavity-
expansion velocity the incompressible solution with strain-rate effects produces the largest
values of radial stress at the cavity surface. Conversely, the compressible solution without
strain rate effects produces the smallest values of radial stress. However, the compressible
solution with strain rate effects (i.e. augmented compressible solution) is greater than the
incompressible solution without strain rate effects up to about a dimensionless cavity-
expansion velocity of two at which point the latter becomes greater.
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PENETRATION MODELS AND COMPARISON OF PREDICTIONS WITH DATA

Penetration equations

In this section we develop penetration equations for rigid spherical-nose rods that
penetrate ductile metal targets. The mass of the spherical-nose rod is given by
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2 |
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where p, is the projectile density, and L and a are the shank length and radius as illustrated
in Fig. 4. As shown by Forrestal er al. (1988), the axial force acting on the spherical-nose
of the projectile is

5

F.o=nd* j “6,(V..0)sin(20) 6, 24)
()

)

where o,(V., 0) 1s the stress normal to the spherical nose and 0 is defined in Fig. 4. [n (24),
sliding frictional stresses tangent to the spherical-nose have been neglected based on both
experimental and numerical results (Camacho and Ortiz, 1997).

From the geometry in Fig. 4, the target particle velocity at the nose-target interface
caused by the projectile penetrating at rigid-body velocity V. is

HV.,0)=V.cos0. (25)
The normal stress distribution o, on the spherical-nose is approximated (Forrestal er al.,
1995) by replacing the spherically symmetric cavity-expansion velocity & in (21) with (25).

Using this result in (24) and integrating gives the axial force acting on the projectile nose
due to target resistance as

F =na’Y /\jLg L!K Y40 %m 26:
.= Ta 3;)(,61 T + S+ s , (26a)

3y
2 2BV M sE [=Inx]" ‘

p = ko (26¢)

oo 26d
T 3Ym24m)’ (26d)

By applying Newton’s second law in the axial direction of the projectile and collecting
terms we obtain

L+ 2O (P L9  ylacwr o (25 27
: poy L dr (2
Pr 3 pp) (14+3L)2a) | d¢ TEVEt agy ) | (27)

As shown by Forrestal et al. (1995) for steel projectiles (p, = 8000 kg/m*) and aluminum
targets (p, = 2710 kg/m*) with L/2a = 10, the second term in the bracket on the left side of
(27) gives 0.011 and can be neglected. Integrating (27) to find the final depth of penetration P
for a given striking velocity V; gives

P _4e <Bn> J v ddd (28a)
(L+2a/3) 3 \po) )y A+O + 00"
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Table 1. Least-square fit coefficients for the different radial stress models

Model A B C
Incompressible without strain rate effects 4.8376 0.0 1.5
Incompressible with strain rate effects 5.5468 0.6255 1.4377
Compressible without strain rate effects 4.4534 0.4680 0.9926
Compressible with strain rate effects 5.0394 0.9830 0.9402

where the integrand is in a dimensionless form and

o=y <”;”> (28b)
v
== (28c¢)
deg

In general 2 is not an integer and (28a) must be integrated numerically. However, the
radial stress at the cavity surface as a function of a cavity-expression velocity can be
represented accurately with a least-squares polynomial fit of degree two. Thus,

Gr(az__ (é ké( ’
i _A+B<\/ Y.‘))+C(\/ y"‘)’ (29)

where A4, B, and C are the dimensionless fitting coefficients. Using (29) with (25) in (24)
gives the axial force acting on a spherical-nose projectile due to target resistance as

o 2 0 o N Lo e, Y
F?~naY[A+3B</YV:>+2(<\/YV_.)} (30)

Substituting (30) into (27) and integrating to find the final depth of penetration P for a
given striking velocity V, gives

P 1 (p, 2B( [p, C/ lpy Y
e = (PP N 12 22 Foy il Oy
(L+2a3) C(p(,){n[ *34 (J S AEVINE AL

3C(S o/ YV.)+2B
- :l —tan : ‘\ "g“\//—p—o;;::::ii’ :H} . (3 1)
2 J184C—4B>

For compressible target materials, cavity-expansion results are obtained numerically,
so we must curve-fit the numerical results in Fig. 6 with the least-squares polynomial fit
and use (31) to obtain the final depth of penetration. Dimensionless values of A, B, and C
for the various cavity-expansion models are given in Table 1.

Results and comparison with penetration data

We now present numerical results from our penetration models that justify the use of
the least-squares fit and show the relative effect of compressibility and strain-rate sensitivity.
We then compare predictions from the model that includes strain hardening, compress-
ibility, and strain-rate effects with penetration data. Forrestal et al. (1988) and Forrestal er
al. (1991) present depth of penetration vs striking velocity data for 6061-T651 aluminum
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given by eqns (28a) and (31).

targets and maraging steel, spherical-nose rods. For these experiments the rod projectiles
had density p, = 8000 kg/m’, shank length L = 71.12 mm, nose radius @ = 3.55 mm, and
nominal mass M = 0.0235 kg. The aluminum targets were cut from 152 mm diameter 6061-
T651 round stock and the material properties are given in the section on the constitutive
model.

Results for the dimensionless depth of penetration as a function of striking velocity
for an incompressible aluminum target with strain hardening and rate-sensitivity were
obtained both by numerically integrating (28a). and also using the closed-form expression
in (31) with the representative coefficients from Table 1. The two results are compared in
Fig. 7 where it is observed that the difference between the two methods is negligible, which
Justifies the use of the least-squares fit approximation. Figure 8 shows depth of penetration
predictions using (31) for both the incompressible and compressible models with and
without strain-rate dependence. In all four cases the least-squares fit approximation was
employed and the coefficients for each case are given in Table 1. It is observed in Fig. 8
that the compressible model without strain-rate effects gives the largest depth of penetration
which is due to the fact that the model provides the least resistance to penetration.
Conversely, the incompressible model with strain-rate effects provides the most resistance
to penetration and therefore has the least depth of penetration. In between these two cases
lies the results for the compressible model with strain-rate effects and the incompressible
model without strain-rate effects. It is observed that at lower velocities the compressible
model with stramn-rate effects provides more resistance to penetration than the in-
compressible model without strain-rate effects; however, at approximately 1400 m/s the
two models intersect with the latter providing more resistance at striking velocities above
1400 my/s.

In Fig. 9. we compare predictions from the penetration model that includes strain
hardening, compressibility, and strain-rate effects with depth of penetration data (Forrestal
et al., 1988 Forrestal er a/., 1991), and show good agreement. While our predictions in
Figs 7-9 extend to V, = 1400 m/s, our data are limited to ¥, = 1200 m/s. Forrestal et al.
(1988) attempted penetration experiments at higher striking velocities, but the shank of the
maraging steel projectiles always fractured in the penetration tunnel.
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Fig. 8. Scaled depth of penetration vs striking velocity obtained from the compressible and incom-
pressible models with and without strain-rate effects.
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Fig. 9. Scaled depth of penetration vs striking velocity obtained from the compressible model with
strain-rate effects and penetration data.

SUMMARY

We present penetration equations for rigid, spherical-nosed rods that penetrate 6061-
T651 aluminum targets and show good agreement between predictions and depth of pen-
etration data. Our study starts by presenting a constitutive model and supporting material
data for nominal strain-rates between 107° s™' and 10° s~'. Next, we solve spherically
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symmetric, cavity-expansion problems that provide stress distributions for our penetration
models. Finally, we develop penetration equations and compare predictions with previously
published depth of penetration data for striking velocities to 1200 m/s. Our models show
that strain hardening, compressibility, and strain rate effects are all required to obtain good
agreement between predictions and data.
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APPENDIX: COMPRESSIBLE STRAIN-HARDENING CAVITY-EXPANSION MODEL

The description of compressible materials requires the use of the pressure-volumetric strain relation

1
p=l0+20,) = Ko, +260) = K<1 - %) (AD

where K'is the bulk modulus which is related to Young's modulus through the relation
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E

K:m (A2)

Due to the fact that Poisson’s ratio with compressible materials is not equal to 1/2 requires the plastic flow
condition without rate effects to be written as

172' ki
g~y = Y [5;_ (ﬁ[‘l)‘“g] ) (A3)

Following Forrestal ¢r al. (1991) by using (Al) and (A2) with the strain definitions (5) in (A3) gives

=¥V EY 1 Q\ ._.._f, ’ GL ¢ A4
7m0 = ZY) n  " (7/‘) r—u +3K ’ A4

Combining (Al) and (A4) to eliminate o, allows the plastic flow rule to be expressed as

2 EY ( Cu oy o )" ’ u uy
A 1 e R

Using (5) and (A3) with the similarity transformation

S=—, (Aba)

and dimensionless variables

a u
S=-L f=-— ==

e : v a E
K’ of’

z L/'—— " — b‘ j ¢
K Vs ime by B

P

(A6b)

where ¢ is the elastic—plastic interface velocity and z,, = K/ip,, transforms the momentum and mass conservation
equations (2a, b) to

ds 2T .. dau
B e = (ﬁjﬁ”kw nSs (ATa)
& : Po dg

. da AP
(&—a)t (1 - a‘;) = (;};)\ (AT7b)

where

. di ¢ s
G =1In l:(l - EE) (i Wﬂ) i|+ i (A7C)

Furthermore, using (A6) in (3) gives

uli_98y_ (, -d2
W) TP a) (A%)

Combining (A7) and (A8) gives a single equation independent of U and p which, when used with (A5), and
the transformation

o =¢—a, (A9)
provides two equations for the two unknowns, § and a. Thus,

v

i

ds 2r [ for dro

dg —+- 7: PG = (jq(')) dél (Al0a)
G d:/

.2T dw /oY

= 9"G" +1n [di() } (A10b)

and
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| (&) de], S
G-ln[(w) d§J+3. (A10c)

Forrestal and Luk (1988) present solutions for the elastic region from which it follows that on the elastic side
of the elastic--plastic interface (& = 1)

>
~J
n
)

S Ta4w 22 .
“‘9(172‘»[' 1+;] (Alla)
T4y
(’73(1- 3 (Al1b)
_arp o (4wl :
§=3 [H (172\')(1+2)]’ (Allc)
where
¢, E(1—v)

LT SNl Al2
o T Fn -2, (A1

and ¢, is the dilatational wave speed. Hugoniot jump conditions for a spherical cavity expansion in a compressible
material require that the displacement, velocity, and traction normal to the elastic—plastic interface be continuous
across the interface (Forrestal and Luk, 1988). Thus, the boundary conditions for (A10) at the plastic side of the
elastic—plastic interface (¢ = 1) are derived using (A9) and (A11) as

LT[, 2% .
v=1"500 ['“‘ 1+)} (A3
3 g _— Al
9,‘:: g dAnd =27 (A13b)
d¢ 9(1 — 2032 — 1)
LN I () VS
$=3 [H (1—2v)(l+i)} (A3

Furthermore. at the cavity surface it is required that
w( =7 =0. (A13d)

Thus, with the four conditions in (A13), equations (A10) can be solved for the four unknowns o, dw/dé, S and 8.

To obtain the radial stress at the cavity surface in a compressible, strain hardening material, equations (A10)
subject to the boundary conditions (A13) are solved numerically using the SLATEC library code DDEABM
(Adams—Bashforth—-Moulton predictor corrector method) developed by Shampine and Watts (1980). To numeri-
cally implement the DDEABM integrator it is required that (A10b) be differentiated and the replacements

o
W) = S ri(d) = wiE). yalE) = ‘jif—)-, (Al4)

be made. As shown by Luk ez a/. (1991) using (A14) in (A10) gives the system of three coupled first order nonlinear
ordinary differential equations

dy,  H,Q,—H,0,

G0, (A1)
B, Al15b
de =¥ ( )

dy, _H,-H,Q,
& " H.—H.0" (Al30)

where
2 " i

H =1- §n7¢"G" (Al6a)

-,
[l+§nT¢”G” '}

R e (A16b)
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H‘:2<;j—z~é)|:17§nT¢"G“ '} (Al6c)
0, = _(/L:) (A16d)
0. = 3 <2T_¢L)£’_ (Al6e)
G =1In (52'"’>+ Ay (Al6f)
» 3

With the numerical integration process not only are values of S, . and dw/d¢ obtained but also the value of
v by using (A13d). Thus, first a value of § [see (A6b)] is selected where 0 < f# < 1. Integration of (Al5) then
proceeds through the region 0 < y < & < | using the initial conditions (A13a—) at £ = I. When w = 0, 7 is known
and the expansion velocity and dimensionless radial stress at the cavity surface are obtained from ¢ = 7" and
S. = vi(y), respectively. It must be noted that as w — 0, dw/dZ — oo ; however, the DDEABM integrator is robust

enough to effectively deal with this adverse situation.



